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We extend the recently developed converse NMR approach [Thonhauser et al., J. Chem. Phys. 131, 101101
(2009)] such that it can be used in conjunction with norm-conserving, nonlocal pseudopotentials. This exten-
sion permits the efficient ab initio calculation of NMR chemical shifts for elements other than hydrogen within
the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and
periodic systems, finding very good agreement with established methods and experimental results.
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I. INTRODUCTION

The experimental technique of nuclear magnetic reso-
nance (NMR) is a powerful tool to determine the structure of
molecules, liquids, and periodic systems. It is thus not sur-
prising that, since its discovery in 1938, NMR has evolved
into one of the most widely used methods in structural
chemistry.!?> Unfortunately, one caveat of this successful
method is that there is no basic, generally valid “recipe” that
allows a unique determination of the structure given a mea-
sured spectrum. As a result, for more complex systems the
mapping between structure and measured spectrum can be
ambiguous.

It had been realized early on that ab initio calculations
could resolve some of these ambiguities and thus greatly aid
in determining structures from experimental NMR spectra.
For finite systems such as simple molecules, appropriate
methods were first developed in the quantum-chemistry
community.> While highly accurate, these methods by con-
struction were unable to calculate NMR shifts of periodic
systems, which is important for the increasingly popular
solid-state NMR spectroscopy. The underlying physical limi-
tation is due to the fact that the description of any constant
external magnetic field requires a nonperiodic vector poten-
tial. Possible approaches to combine such a nonperiodic vec-
tor potential with the periodic potential of crystals were
found only within the last decade.*~® All of these approaches
have in common that they treat the external magnetic field in
terms of the linear response it causes to the system under
consideration. Although these approaches are accurate and
successful, the required linear-response framework makes
them fairly complex and difficult to implement.

Recently, a fundamentally different approach for the cal-
culation of ab initio NMR shifts has been developed by some
of us.” In our converse approach we circumvent the need for
a linear-response framework in that we relate the shifts to the
macroscopic magnetization induced by magnetic point di-
poles placed at the nuclear sites of interest. The converse
approach has the advantage of being conceptually much sim-
pler than other standard approaches and it also allows us to
calculate the NMR shifts of systems with several hundred
atoms. Our converse approach has already successfully been
applied to simple molecules, crystals, liquids, and extended
polycyclic aromatic hydrocarbons.®!0
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While the converse method can be directly implemented
in an all-electron (AE) first-principles computer code, an
implementation into a pseudopotential code is more compli-
cated due to nonlocal projectors usually used in the
Kleinman-Bylander separable form.!" In this paper we
present a mathematical extension to the converse formalism
such that it can be used in conjunction with norm-
conserving, nonlocal pseudopotential. This extension permits
the efficient ab initio calculation of NMR chemical shifts for
elements other than hydrogen within the convenience of a
plane-wave pseudopotential approach.

The paper is organized in the following way: in Sec. II we
first review the converse-NMR method and its relation to the
orbital magnetization at an all-electron level. Then, we apply
the gauge including projector augmented wave (GIPAW)
transformation to derive an expression for the orbital magne-
tization in the context of norm-conserving pseudopotentials
(PS). We discuss aspects of the implementation of the con-
verse method in Sec. III. In this section we also show results
of several convergence tests that we have performed. To vali-
date our approach, we apply our converse approach to mol-
ecules and solids and the results are collected in Sec. IV. In
Sec. V we discuss the main advantages of the converse
method. Finally, we summarize and conclude in Sec. VI. The
GIPAW transformation and several details of the mathemati-
cal formalism—which would be distracting in the main
text—are presented in Appendices A and B.

II. THEORY

The converse method for calculating the NMR chemical
shielding has been introduced in Ref. 9 and can be summa-
rized as follows:

Mp (1)

O-J,D(E= 5‘1’3_ Qﬂm
s,

Thus, in the converse method the chemical shielding tensor
05,qp 18 obtained from the derivative of the orbital magneti-
zation M with respect to a magnetic point dipole my, placed
at the site of atom s. &,4 is the Kronecker delta and () is the
volume of the simulation cell. In other words, instead of
applying a constant magnetic field to an infinite periodic sys-
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tem and calculating the induced field at all equivalent s nu-
clei, we apply an infinite array of magnetic dipoles to all
equivalent sites s, and calculate the change in magnetization.
Since the perturbation is now periodic, the original problem
of the nonperiodic vector potential has been circumvented.

In practice, the derivative in Eq. (1) is calculated as a
finite difference of the orbital magnetization in presence of a
small magnetic point dipole m,. Since M vanishes for m
=0 and is an odd function of m, because of time-reversal
symmetry (for a nonmagnetic system in absence of spin-orbit
interaction), it is sufficient to perform three calculations of
M(me), where e are Cartesian unit vectors.

Within density-functional theory (DFT) the all-electron
Hamiltonian is, in atomic units

1 1 2
H= 5[1» + —As(r)} + Vgs(r), (2)
C

where

m, X (I’—I'S)

MO

3)
is the vector potential corresponding to a magnetic dipole m;
centered at the atom s coordinate r,.'> We neglect any ex-
plicit dependence of the exchange-correlation functional on
the current density. In practice, spin-current density-
functional-theory calculations have shown to produce negli-
gible corrections to the orbital magnetization.'?

In finite systems (i.e., molecules), the orbital magnetiza-
tion can be easily evaluated via the velocity operator v=

—i[r,H]
M= ZLZ (lr X V], (4)
C n

where |i,) are molecular orbitals, spanning the occupied
manifold. For periodic systems, the situation is more compli-
cated due to itinerant surface currents and to the incompat-
ibility of the position operator r with periodic boundary con-
ditions. It has been recently shown'“~!7 that the orbital
magnetization in a periodic system is given by

1
M=- _ImE f(enk)<(9kunk|
2c nk

X (Hy + € — 2€5) [ Oyt ) (5)

where u, are the Bloch wave functions, Hy=e¢ *"He*", €,
are its eigenvalues and e is the Fermi level. The k derivative
of the Bloch wave functions can be evaluated as a covariant
derivative'® or by k-p perturbation theory."”

Equations (2) and (5) are adequate to evaluate the NMR
shielding tensor Eq. (1) in the context of an all-electron
method [such as full-potential linearized augmented plane
wave (FLAPW), or local-basis methods), in which the inter-
action between core and valence electrons is treated explic-
itly. However, in a pseudopotential framework, where the
effect of the core electrons has been replaced by a smooth
effective potential, Egs. (2) and (5) are not sufficient to
evaluate the NMR shielding tensor. One reason for this is
that the valence wave functions have been replaced by
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smoother pseudowave functions which deviate significantly
from the all-electron ones in the core region.

In the following sections, we derive the formulas needed
to calculate the converse NMR shielding tensor in Eq. (1), in
the context of the pseudopotential method. Our derivation is
based on the GIPAW transformation® (see also Appendix A)
that allows one to reconstruct all-electron wave functions
from smooth pseudopotential wave functions. For the sake of
simplicity, we assume all GIPAW projectors to be norm con-
serving.

A. Converse-NMR GIPAW Hamiltonian

In this section we derive the pseudopotential GIPAW
Hamiltonian corresponding to the AE Hamiltonian in Eq. (2).
For reasons that will be clear in the next section, we include
an external uniform magnetic field B in addition to the mag-
netic field generated by the point dipole m,. For the sake of
simplicity, we carry out the derivation for an isolated system
(i.e., a molecule) in the symmetric gauge A(r)=(1/2)B Xr.
The generalization to periodic systems is then performed at
the end.

We start with the all-electron Hamiltonian

Hag=

2
%{w i[A(r)+Ax(r)]} e ®

We now decompose Eq. (6) in powers of A as HAE=H(ASE)
+HSD+HEY, where

s 1 1 2
Hag = S|Pt ;A(r) +V(r), (7)

HiP =50 A0+ A0 - p+ CIIAR) - AW, (8)

HXI%: =5 2A (r)*.

We can neglect H@) in all calculations since m; is a small
perturbation to the electronic structure.

We then apply the GIPAW transformation Eq. (A4) to the
two remaining terms, Eqs. (7) and (8), and we expand the
results up to first order in the magnetic field. At zeroth
order in the external ma netic field B, the GIPAW transfor-
mation of HXO) and H yields the GIPAW Hamiltonian

Heipaw = Hg?P(/)\W Hgllﬁ%)w’ ©)
Hetaw = P2 + Viee(r) + 2, VRE, (10)
R

Hgsp‘,iw=—[p Ay(r) +A,(r) - p]+21<§& (11)

where Vi(r) is the local Kohn-Sham potential and VR" is
the nonlocal pseudopotential in the separable Kleinmann-
Bylander (KB) form
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VEL = E |BR,n>vR,nm<ﬁR,m| . (12)

nm

Similar to VR, the term KR~ has the form of a nonlocal
operator

1
NL
Ky-=—

2 |ﬁR,n>kR,mn<ﬁR,m ’ (13)

nm

kR,nm = <¢R,n|p ' Ax(r) + Ax(r) : p|¢R,m>
- <$R,n|p ' As(r) + As(r) : p|a;R,m> (14)

The index R runs over all atoms in the system, and the in-
dexes n and m, individually run over all projectors associated

with atom R. For a definition of |¢g ) and | g ,) see Appen-
dix A. Note that the set of GIPAW projectors |pg) need not
be the same as the KB projectors |Bg). For instance, in the
case of norm-conserving pseudopotentials, one KB projector
per nonlocal channel is usually constructed. Conversely, two
GIPAW projectors for each angular momentum channel are
usually needed.

Equation (9) is the Hamiltonian to be implemented in or-
der to apply a point magnetic dipole to the system. The first
term of Hélllsg)w can be applied to a wave function in real
space or in reciprocal space. The second term acts on the
wave functions like an extra nonlocal term and requires very
little change to the existing framework that applies the non-
local potential.

At the first order in the magnetic field, the GIPAW trans-
formation yields two terms

1 1
Hgﬁsk)w=ZB- <L+ER>< ;[r,VﬁL]), (15)
R

: 1

Héipaw = 2B (r X A(r)+ 2 ER-+ 2 X R;[r,KIﬁIL]),
R R

(16)

where L=r X p and ER" is the nonlocal operator

EEL = 2 |ﬁR,n>eR,nm<ﬁR,m s (17)

eR,nm = <¢R,n|(r - R) X As(r)|¢R,m>
- <($R,n|(r - R) X Ax(r)|($R,m> . (18)

The two equations above will be used in the next section, in
conjunction with the Hellmann-Feynman theorem, to derive
the GIPAW form of the orbital magnetization.

B. Orbital magnetization in the GIPAW formalism

The orbital magnetization for a nonspin-polarized system
is formally given by the Hellmann-Feynman theorem as
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M<H_> | o
B [ o

In the GIPAW formalism this expectation value can be ex-
pressed in terms of the GIPAW Hamiltonian and pseudowave

functions
oH
M=— GIPAW . (20)
JB B=0

By using the results of the previous section we find

occ

M=-—2 (|L+r X A(r)
2c¢”,

+ BN+ i RX[VRE+ KRE el (21)
R R

Note that in the expression above, i, are the eigenstates of
the GIPAW Hamiltonian in absence of any external magnetic
fields.

While the formula (21) for M can directly be applied to
atoms and molecules, it is ill-defined in the context of peri-
odic systems, owing to the presence of the position
operator—explicitly as in r but also implicitly as in L. This
problem can be remedied by applying the modern theory of
orbital magnetization.'*"!” The goal is thus to reformulate
Eq. (21) in terms of (rvgpaw). We can calculate this operator
as

1
r X Vgppaw =TI X ?[rvHGIPAW]Bzo
=L+rXAr)+ i>rX [VEL+ KEL,r].
R

(22)

Replacing L in Eq. (21) by the corresponding expression
calculated from Eq. (22), and regrouping the terms, we ob-
tain the central result of this paper

M= Mbare + MNL + Mpara + Mdia’

1
Myyre =— 2_C<1' X VGIpAW) » (23)

My = 2—<§ (R-r) X [(R - r>,v§L]>, 4

Myp= - i<2 (R—1) X [(R—r>,K§LJ>, (25)
2c\ R

1
Mg, =— 2_<2 E§L>, (26)
C\ R

where (...) stands for =0°°(¢%,|* -+|44,). The naming of the
various terms is in analogy to Ref. 6. The set of Eqgs.
(23)—(26) are now valid both in isolated and periodic sys-
tems, as shown in detail in Appendix B.
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TABLE I. Chemical shielding o in ppm of a hydrogen atom in
a water molecule as a function of the kinetic-energy cutoff Eyy, (in
units of Rydberg).

Eyin (Ry) o (ppm) Eyin (Ryd) o (ppm)
30 31.0009 70 31.1177
40 31.0595 80 31.1301
50 31.0637 90 31.1228
60 31.0832 100 31.1119

III. IMPLEMENTATION AND COMPUTATIONAL
DETAILS

We have implemented the converse NMR method and its
GIPAW transformation into PWSCF, which is part of the
QUANTUM-ESPRESSO package.?!

In principle, the calculation of the NMR shielding is per-
formed the following way: the vector potential correspond-
ing to the microscopic dipole is included in the Hamiltonian
and the Kohn-Sham equation is solved self-consistently un-
der that Hamiltonian. In practice, however, in a first step one
can equally as well find the ground state of the unperturbed
system. Based on this ground state, in the second step one
can then introduce the dipole perturbation and reconverge to
the new ground state. Note that the reconvergence of the
small dipole perturbation is usually very fast and only a
small number of self-consistent-field (SCF) steps is neces-
sary in addition to the ground-state calculation. In fact, tests
have shown that a reconvergence is not even necessary—
diagonalizing the perturbed Hamiltonian only once with the
unperturbed wave functions gives results for the NMR
shielding within 0.01 ppm of the fully converged solution.
This yields a huge calculational benefit for large systems,
where we calculate the unperturbed ground state once and
then, based on the converged ground-state wave functions,
calculate all shieldings of interest by non-SCF calculations.

In order to study the convergence of the NMR chemical
shielding with several parameters, we performed simple tests
on a water molecule in the gas phase. The molecule was
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relaxed in a box of 30 Bohr; for all our calculations we used
Troullier-Martin norm-conserving pseudopotentials?®> and a
PBE exchange-correlation functional.”3

First, we tested the convergence of the NMR shielding
with respect to the kinetic-energy cutoff Ey;, and the results
are presented in Table I. The shielding o is converged to
within 0.02 ppm for a kinetic-energy cutoff of 80 Ryd. Simi-
lar tests on other structures show similar results.

Next, we tested the convergence of the NMR shielding
with respect to the magnitude of the microscopic dipole |m,|
used and the energy-convergence criterion. At first sight it
might appear difficult to accurately converge the electronic
structure in the presence of a small microscopic magnetic
point dipole. Thus, we tested using different magnitudes for
the microscopic dipole spanning several orders of magnitude
from 107> u (which is actually much less than the value of a
core spin) to 103w, (which is obviously much more than an
electron spin). On the other hand, the ability to converge the
electronic structure accurately goes hand in hand with the
energy convergence criterion E_,,, that is used in such cal-
culations. This criterion is defined such that the calculation is
considered converged if the energy difference between two
consecutive SCF steps is smaller than E_,,. The results for
the shielding as a function of |m,| and E,,, are collected in
Table II. It is interesting to see that it is just as simple to
converge with a small dipole than it is to converge with a
large dipole. In either case, using at least E_,,,=10"* Ry
yields results converged to within 0.1 ppm. Such a conver-
gence criterion is not even particularly “tight” and most stan-
dard codes use at least E,,,=107® Ry as default. Note that
first signs of nonlinear effects appear if large dipoles such as
|m|=100uz or |m,|=1000u; are used. In conclusion of the
above tests, we use |my=1ug E.,=10" Ry, and Ej,
=100 Ry for all calculations.

Generation of GIPAW pseudopotentials

We have generated special-purpose norm-conserving
pseudopotentials for our GIPAW calculations. In addition to
standard norm-conserving PS, the GIPAW pseudopotentials

TABLE II. Chemical shielding in ppm of a hydrogen atom in a water molecule. The shielding is given as a function of the magnitude of
the microscopic dipole |my| (in units of Bohr magneton uz) and the energy convergence criterion E,, (in units of Rydberg). E,, is defined
such that the calculation is considered converged if the energy difference between two consecutive SCF steps is smaller than E,,.

Econy (Ry)

Imy| (ug) 1072 1073 1074 1075 107° 1077 1078 107° 10710
0.00001 31.5170 31.2541 31.2541 31.1354 31.1403 31.1338 31.1356 31.1356 31.1356
0.0001 31.5265 31.2664 31.2664 31.1392 31.1390 31.1322 31.1300 31.1300 31.1300
0.001 31.5253 31.2667 31.2667 31.1395 31.1397 31.1328 31.1304 31.1304 31.1304
0.01 31.5251 31.2665 31.2665 31.1395 31.1394 31.1325 31.1303 31.1303 31.1303
0.1 31.5250 31.2664 31.2664 31.1393 31.1393 31.1323 31.1301 31.1301 31.1301
1.0 31.5250 31.2664 31.2664 31.1393 31.1393 31.1323 31.1301 31.1301 31.1301
10.0 31.5250 31.2663 31.2663 31.1392 31.1392 31.1322 31.1301 31.1301 31.1301

100.0 31.5212 31.2586 31.2586 31.1350 31.1327 31.1243 31.1256 31.1256 31.1252

1000.0 31.0167 30.5904 30.7197 30.6618 30.6334 30.6408 30.6403 30.6404 30.6405
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TABLE III. Electronic configuration and cut-off radii for the
norm-conserving pseudopotentials used in the present work.

Atom Configuration r.(s) r.(p) r.(d)
H 152 0.50

B [He] 25%2p' 1.40 1.40

C [He] 25%2p 1.50 1.50

N [He] 25%2p° 1.45 1.45

0 [He] 2522p* 1.40 1.40

F [He] 25%2p° 1.30 1.30

P [Ne] 3s23p>3d° 1.90 2.10 2.10
Si [Ne] 3s23p!334%2 2.00 2.00 2.00
cl [Ne] 35'7°3p*3340% 1.40 1.40 1.40
Cu [Ar] 4s5'4p°34'0 2.05 2.20 2.05

include (i) the full set of AE core atomic functions and (ii)
the AE (¢,) and the PS (¢,) valence atomic orbitals. The
isotropic NMR contribution is computed from the core orbit-
als as

1 1
Ocore = 5 E 2(2'ln + 1)<¢n|;|¢n> (27)

2C necore

The AE and PS valence orbitals are used to compute the
coefficients kg, and eg ,,, at the beginning of the calcula-
tion. The PS valence orbitals are also used to compute the
GIPAW projectors |pg) from

|I7R,n> = E (S_l)nm|($R,m>’ (28)

Snm = <$R,n| (ZR,m>R(, (29)

S is the overlap between atomic PS wave function, integrated
up to the cut-off radius of the corresponding pseudopotential
channel.

We construct at least two projectors per angular momen-
tum channel by combining each valence orbital with one
excited state with the same angular momentum. For ex-
ample, for hydrogen we include the 2s orbital in the set of
atomic wave functions. For all second row elements, we add
the 35 and 3p orbitals, and so on. If any excited state turns
out to be unbound (as in the case of oxygen and fluorine), we
generate an atomic wave function as a scattering state at an
energy 0.5 Ry higher than the corresponding valence state.
This procedure ensures that the GIPAW projectors are lin-
early independent and that the matrix S is not singular.

We found that the accuracy of the calculated NMR chemi-
cal shifts depends critically on the cut-off radii of the
pseudopotentials. Whereas the total energy and the molecular
geometry converge more quickly with respect to reducing the
pseudopotential radii, the NMR chemical shift converges
more slowly. Therefore, GIPAW pseudopotentials have to be
generated with smaller radii compared to the pseudopoten-
tials usually employed for total energy calculations. Table III
reports the atomic configuration and the cut-off radii used to
generate the pseudopotentials.
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TABLE IV. Results for the absolute NMR shielding ¢ in ppm of
small molecules for the direct and converse methods. The core con-
tribution to the shielding is also shown.

Molecule Direct Converse Core
H shielding
CH4 30.743 30.670 0.0
CeHg 22.439 22.403 0.0
SiHy 27.444 27.413 0.0
TMS 30.117 30.125 0.0
C shielding
CH4 185.435 186.027 200.333
C¢Hg 36.887 37.205 200.333
CH;F 93.704 94.250 200.333
TMS 175.774 176.094 200.333
F shielding
CH;F 448.562 447.014 305.815
PF; 277.148 275.819 305.815
SiF, 378.857 376.227 305.815
SiH3F 423.456 422.253 305.815
P shielding
P, —-323.566 -320.201 908.854
PF; 150.603 150.856 908.854
Si shielding
SiF, 431.438 432.495 837.913
SiH;3F 337.648 337.677 837.913
SioHy 230.830 230.489 837913
TMS 320.958 320.636 837913
IV. RESULTS

In this section we present results for molecules and solids.
We first calculated the absolute shielding tensor of some
small molecules by two different approaches, the direct (lin-
ear response) and the converse method, in order to check that
the two yield the same results. Then, we compared the
chemical shifts of fluorine compounds, calculated by the
converse method and by all-electron large basis set quantum-
chemistry calculations. Finally, we report the calculated *°Si
chemical shifts of three SiO, polymorphs and the Cu shift of
a metallorganic compound.

A. Small molecules

We calculated the chemical shift of hydrogen, carbon,
fluorine, phosphorus, and silicon atoms of various small mol-
ecules. First, the structures were relaxed using PWSCF in a
box of 30 Bohr and a force convergence threshold of
10~* Ry/Bohr. Using the resulting positions, the chemical
shifts were calculated using both the direct and converse
method, and the results are shown in Table IV. This bench-

184424-5



CERESOLI et al.

PHYSICAL REVIEW B 81, 184424 (2010)

TABLE V. Experimental and calculated 1F chemical shifts in ppm with respect to CF;Cl. In all calcu-
lations (GAUSSIANO3 and GIPAW plane waves), we used Cg¢Fg as the reference compound. The experimental
values of p-C¢HyF, and C¢HsF are exchanged with respect to Ref. 27. For molecules with inequivalent F
atoms, the average chemical shift is reported. MAE is the mean absolute error in ppm with respect to

experiment.
Gaussian Gaussian Gaussian Gaussian

Molecule Expt.2 cc-pVTZ cc-pvVQZ cc-pVSZ cc-pVoZ GIPAW converse
CH,FCN =251 -253.07 -253.47 —254.25 -254.79 -258.31
CgFg -164.9 -164.90 -164.90 -164.90 -164.90 -164.90
BF; -131.3 -145.93 —139.55 —-136.37 —-135.49 —-135.65
p-CeH,F, -113.15 -115.77 -113.98 -114.07 -113.78 -111.84
Cg¢HsF -106 -106.84 -104.94 -104.83 -104.35 -104.68
(CF;3),CO —-84.6 -90.37 -82.12 -78.81 -77.83 -76.63
CF;COOH -76.55 —87.82 -81.38 -77.88 -76.80 -75.90
C¢H;sCF; —63.72 -78.24 -69.42 -66.21 -65.28 -64.16
CF, -62.5 -74.48 -73.94 -68.76 —66.66 —66.05
F, 422.92 367.92 375.36 383.03 385.72 390.02
MAE 13.19 9.40 7.35 6.69 5.64

4Reference 26.

mark calculation shows that the direct and the converse
methods agree to within less than 1%.

B. Fluorine compounds

In structural biology '°F NMR spectroscopy plays an im-
portant role in determining the structure of protein
membranes.2* The advantage over °N and '"O labeling is
twofold: the natural abundance of '°F is nearly 100% and '°F
has spin 1/2, i.e., a vanishing nuclear quadrupole moment.
Quadrupole interactions in high-spin nuclei (e.g., ’0) are
responsible for the broadening of the NMR spectrum. On the
contrary, "’F NMR yields very sharp and resolved lines. In
addition, it has been found that the substitution of -CHj3
groups with -CF; in some amino acids does not perturb the
structure and the activity of protein membranes, allowing for
in vivo NMR measurements.

In order to benchmark the accuracy of our method, we
calculated the '°F chemical shifts of ten fluorine compounds
utilizing the converse method and we compared our results
to all-electron Gaussian-basis set calculations, as well as to
experimental data. The molecules were first relaxed with
GAUSSIANO3 (Ref. 25) with the 6-311+g(2d,p) basis set at
the B3LYP level. Then, we calculated the IGAIM chemical
shift with GAUSSIANO3, with the cc-pVTZ, cc-pVQZ, cc-
pV5Z, and cc-pV6Z basis sets.?®

To calculate the relative chemical shifts, we used C¢F¢ as
a secondary reference compound, and we used the experi-
mental C¢Fg chemical shift, to get the primary reference ab-
solute shift (CF;Cl). The results are shown in Table V and in
Fig. 1. While compiling Table V we suspected that the ex-
perimental values of p-C4H,F, and C¢HsF have been mis-
takenly exchanged in Ref. 27. A quick inspection of the
original paper,”® confirmed our suspicion. The overall agree-
ment of the converse method with experimental data is very
good, and of the same quality as the cc-pV6Z basis set,

which comprises 140 basis functions for second row atoms.
The calculation time required by our plane-wave converse
method is comparable to that of cc-pV5Z calculations.

C. Solids

In this section we present the 2°Si and '’O chemical shifts
calculated by our converse method in four SiO, polymorphs:
quartz, B cristobalite, coesite, and stishovite. Coesite and
stishovite are metastable phases that form at high tempera-
ture and pressures developed during a meteor impact.” Be-
sides their natural occurrence in meteors, they can also be
artificially synthesized by shock experiments.

-50 T I I —
L
- W O
L O Gaussian pVTZ ° i
B Gaussian pvQZ o’ 50 |
100 | @ Gaussian pV5Z VT W
A Gaussian pV6Z T O,
Q0o T
+ GIPAW 0,0 T
— I | - ()(ﬂ o
g. o e
& L Q906
= -150 |- T
S s
kS L &
> L | om 4
o
8 ug
200~ © —
O
LLN
I |
(&)
1
-250 - |
| | | |
-250 -200 -150 -100 -50

Experimental [ppm]

FIG. 1. (Color online) Experimental vs calculated 19F chemical
shifts in ppm with respect to CF5Cl. For sake of clarity the chemical
shift of F, is not shown.
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TABLE VI. Calculated and experimental 2Si and "0 NMR
chemical shifts of four SiO, crystals in ppm. Experimental data was
taken from Refs. 29 and 30. In the case of coesite all inequivalent
chemical shifts are reported.

Mineral Calc. S (ppm) Expt. & (ppm)
29g;

Quartz -107.10 -107.73

B cristobalite -108.78 -108.50

Stishovite —-184.13 —-191.33

Coesite -107.30 -107.73

—-113.35 -114.33

170

Quartz 43.52 40.8

B cristobalite 40.35 37.2

Stishovite 116.35 N/A

Coesite 26.35 29
39.66 41
52.70 53
56.84 57
59.03 58

We adopted the experimental crystal structures and atom
positions in all calculations. We used a cutoff of 100 Ryd and
a k-point mesh of 8§ X8 X8 for quartz, B cristobalite and
stishovite. In the case of coesite, having the largest primitive
cell (48 atoms), we used a k-point mesh of 4 X4 X4. In
Table VI we show a comparison between the calculated and
the experimental chemical shifts for the four crystals. We
determined the 2°Si and "0 reference shielding as the inter-
cept of the least-square linear interpolation of the (o, Oexpt)
pairs. Note that the nuclear magnetic dipole m; breaks the
symmetry of the Hamiltonian. Thus, we retained only the
symmetry operations that map site s in s’ without changing
the orientation of the magnetic dipole (i.e., s—s',m;=m,).

Another important point is that in periodic systems we are
not just including one nuclear dipole but rather an infinite
array. Thus, interactions between my and its infinite periodic
replicas become important and the chemical shift should be
converged with respect to the supercell size. To test for this
convergence, we repeated the calculations for quartz and 8
cristobalite in a larger supercell and we found a change in
chemical shift of less than 0.1 ppm. This rapid convergence
is due to the 1/ decay of the magnetic dipole interactions.

D. Large systems

Reactive sites in biological systems such as organometal-
lic molecules, as well as inorganic materials, are of great
importance. In particular, there is a surge of interest in study-
ing copper(I) reactive sites using solid-state NMR. NMR ex-
periments on these materials are challenging because of the
large nuclear quadrupole moments of *Cu and ®Cu. Here,
we present the results for the copper-phosphine metallocene,
tetramethylcyclopentadienyl copper(I) triphenylphosphine
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FIG. 2. (Color online) The molecular structure of the metal-
locene, tetramethylcyclopentadienyl copper(i) triphenylphosphine
(CpCuPPh3). The copper is shown in gold (light gray) forming the
metallocene bond while the phosphorus is green (gray). The crystal
structure of this material consists of a 228-atom orthorhombic unit
cell.

(CpCuPPh3), which as a solid contains 228 atoms in a primi-
tive orthorhombic unit cell. The molecular structure is shown
in Fig. 2. The properties of the shielding tensor for the cop-
per environment were observed experimentally for the solid
material and simulated using quantum-chemical methods on
the molecular complex.?!

While the converse approach can calculate the chemical
shift for this large system easily, it is more challenging for
the linear-response method, which in our experience took
much longer in general, did not finish at all, or was unable to
handle such large systems. We calculated the copper chemi-
cal shift for CpCuPPh3 using the converse method with an
energy cutoff of 80 Ry in the self-consistent step and PBE
pseudopotentials. While previous quantum-chemical calcula-
tions were able to reasonably reproduce the experimental
span (1300 ppm) and the skew (0.95) of the chemical shield-
ing tensor, they were not able to calculate the chemical shift
itself [0 ppm relative to copper (I) chloride], with an inaccu-
racy of several hundred ppm.3' In addition to yielding excel-
lent agreement with experiment to within 2 ppm for the
chemical shift, our calculations also gave good results for the
span (1038 ppm) and the skew (0.82) of the chemical shield-
ing tensor.

V. DISCUSSION

The results presented in the previous sections and in a
previous work”? show that DFT is able to predict accurately
the chemical shift of molecules and solids. In general, we
expect this to be true for any weakly correlated system, well
described by the generalized-gradient approximation. In ad-
dition to that, relativistic corrections to the NMR chemical
shifts are negligible for all light elements in the periodic
table and become important starting from fourth row ele-
ments.
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However, there will always exist “difficult” cases in
which relativistic corrections cannot be neglected and/or one
has to go beyond DFT with standard local functionals. This
is an active field of research in quantum chemistry3?33 and
today it is customary to compute NMR chemical shifts with
semilocal hybrid DFT functionals (such as B3LYP). Most
quantum-chemistry codes allow the inclusion of relativistic
effects (spin orbit) by perturbation theory; furthermore, fully
relativistic (four component) solutions of the Dirac-Breit
equation have recently been implemented.>?

To the best of our knowledge, all existing ab initio codes,
calculate NMR shifts by perturbation theory. Among them,
localized-basis sets are the most popular choice to expand
wave functions. This leads to very complicated mathematical
expressions and to gauge-dependent results. Only two plane-
wave, linear-response implementations>® have been reported.
Our converse-NMR method is built on Mauri’s GIPAW
method but has the advantage of circumventing the need for
a linear response framework.

The main advantage of our converse-NMR method is that
it requires only the ground state wave functions and Hamil-
tonian to calculate the orbital magnetization. Since no exter-
nal magnetic field is included in the calculation, our method
solves the gauge-origin problem. Moreover, “difficult cases”
can be treated easily by our converse method, provided that
relativistic corrections and many-body effects are included in
the Hamiltonian. Thus, one can concentrate effectively all
efforts in developing advanced post-DFT theories (i.e.,
DFT+ U, dynamical mean-field theory (DMFT), hybrid func-
tionals, and self-interaction-free methods) and benchmark
them against NMR experiments.

VI. SUMMARY

In this paper we have generalized the recently developed
converse NMR approach’ such that it can be used in con-
junction with norm-conserving, nonlocal pseudopotentials.
We have tested our approach both in finite and periodic sys-
tems, on small molecules, four silicate minerals, and a mo-
lecular crystal. In all cases, we have found very good agree-
ment with established methods and experimental results.

The main advantage of the converse-NMR method is that
it requires only the ground-state wave functions and Hamil-
tonian, circumventing the need of any linear response treat-
ment. This is of paramount importance for the rapid devel-
opment and validation of new methods that go beyond DFT.

Currently, we are applying the converse NMR method to
study large biological systems such as nuclei acids’* and
drug-DNA interactions>>-3¢ in conjunction with a recently de-
veloped van der Waals exchange-correlation functional.3”-3
We are also exploring the possibility to calculate nonpertur-
batively the Knight shift in metals. Finally, the converse
method can be used to calculate the electron paramagnetic
resonance g tensor in molecules and solids.
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APPENDIX A: THE GIPAW TRANSFORMATION

The starting point is the projector augmented wave (PAW)
transformation*

T=1+ 2 (|¢R,n> - |$R,n>)<ﬁR,n

R.n

; (A1)

which connects an all-electron wave function |¢) to the cor-
responding pseudopotential wave function |¢) via: |¢)

=T[4). Here, bg.,) are all-electron partial waves, |¢g ) are
pseudopotential partial waves, and (Pg ,| are PAW projectors.
The sum runs over the atom positions R. n is a combined
index that runs over the set of projectors attached to atom R.
In the original PAW formalism, there are two sets of projec-
tors per angular momentum channel (0, ...,/,,,), each with
(21+1) projectors for a total of 2(/,,,,+1)> PAW projectors.

The expectation value of an all-electron operator O g be-
tween all-electron wave functions can then be expressed as
the expectation value of a pseudo-operator Opg between

pseudowave functions as (O ag|¥)=(J|Ops|1h), where the
Opg is given by

Ops =T OpT=O0pp+ 2, PR PR 4| OnE| PR )

R.,nm

- <$R,n| 0AE| $R,m>]<ﬁR,m| .

In the presence of external magnetic fields the PAW transfor-
mation is no longer invariant with respect to translations (ex-
cept in the very simple case of only one augmentation re-
gion). This deficiency was resolved by Mauri e al. who
developed the GIPAW (gauge including PAW) method,®
which is similar to the PAW transformation from Eq. (A2)
but with the inclusion of phase factor compensating the
gauge term arising from the translation of a wave function in
a magnetic field. The GIPAW transformation in the symmet-
ric gauge reads

TG =1+ E e(i/2c‘)r-R><B(|¢)R’n> - |$R,n>) : <ﬁR,n|g_(i/20)r'R><B
R.n

(A2)

(A3)
and the corresponding pseudopotential operator Opg 1S
Ops = TG0ngTG = Opp + > e([/zc)r'RXB|ﬁR,n>
R.nm
. [<¢R’n|e—(i/2c)r-RXBOAEe(i/Zc)r-RXB|QSR’"I)
_ <&RJJe—(i/2c)r-RXBOAEe(i/2c)r-R><B|&R’mﬂ
. <ﬁR m|e—(i/20)r-R><B. (A4)

In the following we will refer to the often occurring part

Opp=e PITRXB olI2OrRXB ag jnner operator and de-

note it with a hat. The above expression allows us to calcu-
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late accurate expectation values of operators within a
pseudopotential approach. In this work we carry out the deri-
vation working in the symmetric gauge A(r)=(1/2)BXr.
This is not an issue, since all physical quantities we are
working with, are gauge invariant.

One useful property of the GIPAW transformation is

n

e—(z’/2c‘)r-RXB[p + lA(r)]ne(i/z")r'RXB = [p + lA(r - R)] :
c c

(A5)

APPENDIX B: PERIODIC SYSTEMS

Note that the set of Egs. (23) is well defined also in peri-
odic boundary conditions. In fact, M. can be calculated by
the modern theory of the orbital magnetization'*'7 as

1
Mygre == Zlmz F€n){Fxctt
nk

X (Hy + € — 2€8) [ Ot o) | rraws (B1)

where H, is the GIPAW Hamiltonian, and €, and |u,,) are
its eigenvalues and eigenvectors.

The position operator appearing in the other terms in Eq.
(23) is well defined because the projectors |Bg,,) and |pg.,)
are nonvanishing only inside an augmentation sphere, cen-
tered around atom R.

The expression of My, M, and M, can be further
manipulated in order to work with Bloch wave functions. In
the following part, we show it only for My since M, is
similar. The term Mg;, can be manipulated instead in a trivial
way.

Let’s consider the expectation value of

(r—R) X [r=R,VR"]=—(r—-R) X (V{")(r - R)

(B2)
on a Bloch state |i,)=e™u,u)
- 2 <unk|e_ikr(r - R) X (VEL)(I‘ - R)eikr|unk> =",
R
(B3)
=T 2 E <unk|e_ikr(r -L- T)|:8L+7',i>
L7 ij

XU ALyl = L= D)™ i), (B4)

where L are the real-space lattice vectors (not to be confused
with the angular momentum operator) and 7 are the position
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of the atoms in the unit cell. Inserting two canceling phase
factors

cee = 2 E <unk|e_ik(r_L_T)(l' -L- 7)|BL+1',1’>
L7 ij

X UZI‘}'+T<:8L+T,J‘|(I‘ —L - D™y, (BS)

one can recognize immediately the k derivative of the KB
projectors. In addition, since the KB projectors vanish out-
side their augmentation regions, it is possible to insert a sec-
ond sum over L’ running on the right-hand side of the cross
product

D> (Ul (- l/i)ak(e_ik(r_L_T)|ﬁL+r,i>)
LL 7 i
X i (1) A Brrargle™ ™™ i),

==Y (Mnk|f9k<2 e_ik(r_L_T)|BL+7,i>)
Tj L

X UiLj+T‘9k<E <,3L’+7,j|eik(r_L,_T)) lug).  (B7)
LV

(B6)

In periodic systems the structure factors can be absorbed by
the projectors

Ve =2 2 1850085, (BS)
T ij
By =2 e B ). (BY)
L
Finally
1 occ
My =—2> > (il B X Uf,ij<(9k:81;,j|unk>’
2¢%k 7ij !
(B10a)
1 occ
Mpara = 2_2 E _.<unk|‘9kp~l:-,i> X kT,ii<akﬁI;,j|unk>9
nk mij
(B10b)
Mdia == ZE <u11k|ﬁl:',i>er,ij<ﬁi;,j|unk>' (BlOC)
nk

This completes the main result and it allows us to calculate
the orbital magnetization in the presence of nonlocal pseudo-
potentials. With this result we can now easily and efficiently
calculate the NMR chemical shift for elements heavier then
hydrogen using Eq. (1).
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